BAB 3 Proses

3.1. Pengertian proses (task/job)

Proses berisi instruksi, data, program counter, register pemroses, stack data, alamat pengiriman dan variabel pendukung lainnya. Terdapat beberapa definisi mengenai proses, antara lain : a. Merupakan konsep pokok dalam sistem operasi, sehingga masalah manajemen proses adalah masalah utama dalam perancangan sistem operasi. b. Proses adalah program yang sedang dieksekusi. c. Proses adalah unit kerja terkecil yang secara individu memiliki sumber daya dan dijadwalkan oleh sistem operasi. Peran sistem operasi dalam kegiatan proses adalah mengelola semua proses di sistem dan mengalokasikan sumber daya ke proses tersebut. Banyak proses yang dijalankan bersamaan, dimana setiap proses mendapat bagian memori dan kendali sendiri-sendiri (peran SO), sehingga setiap proses (program) memiliki prinsip : a. Independent, artinya program-program tersebut berdiri sendiri, terpisah dan saling tidak bergantung. b. One program at any instant, artinya hanya terdapat satu proses yang dilayani pemroses pada satu saat. Dalam multiprogramming, teknik penanganan proses adalah dengan mengeksekusi satu proses dan secara cepat beralih ke proses lainnya (bergiliran),sehingga menimbulkan efek paralel semu (pseudoparallelism). Gambar (a) : Multiprogramming dengan 4 proses (program/job) (b) : Model konseptual dari 4 proses independent, sequential proses (c) : Hanya 1 proses yang aktif pada suatu saat

3.2. Pengendalian proses

Dalam pengendalian antar proses, sistem operasi menggunakan metode : a. Saling melanjutkan (interleave) Sistem operasi harus dapat kembali melanjutkan proses setelah melayani proses lain. b. Kebijaksaan tertentu Sistem operasi harus mengalokasikan sumber daya ke proses berdasar prioritasnya. c. Komunikasi antar proses dan penciptaan proses Sistem operasi harus mendukung komunikasi dan penciptaan antar proses (menstrukturkan aplikasi). Pada sistem dengan banyak proses aktif, proses-proses pada satu saat berada dalam beragam tahap eksekusinya. Proses mengalami beragam state (ready, running, blocked) selama siklus hidupnya sebelum berakhir dan keluar dari sistem. Sistem operasi harus dapat mengetahui state masing-masing proses dan merekam semua perubahan yang terjadi secara dinamis. Informasi tersebut digunakan untuk kegiatan penjadwalan dan memutuskan alokasi sumber daya.

3.3 Status (state) proses

Sebuah proses akan mengalami serangkaian state diskrit. Beragam kejadian dapat menyebabkan perubahan state proses. Tiga state tersebut adalah sebagai berikut : Tabel 3.1 : Tiga state dasar proses Hubungan ketiga state dasar digambarkan dalam diagram berikut : Gambar 3.1 Diagram tiga state dasar proses Penjelasan diagram : 1. Proses yang baru diciptakan akan mempunyai state ready. 2. Proses berstate running menjadi blocked, karena sumbar daya yang diminta belum tersedia atau meminta layanan perangkat masukan/keluaran, sehingga menunggu kejadian muncul. Proses menunggu kejadian alokasi sumber daya atau selesainya layanan perangkat masukan/keluaran (event wait). 3. Proses berstate running menjadi ready, karena penjadwal memutuskan eksekusi proses lain karena jatah waktu untuk proses tersebut telah habis (time out). 4. Proses berstate blocked menjadi ready saat sumber daya yang diminta/ diperlukan telah tersedia atau layanan perangkat masukan/keluaran selesai (event occurs). 5. Proses berstate ready menjadi running, karena penjadwal memutuskan penggunaan pemroses utnuk proses itu karena proses yang saat itu running berubah statenya (menjadi ready ata blocked) atau telah menyelesaikan sehingga disingkirkan dari sistem. Proses menjadi mendapatkan jatah pemroses.

3.4 Diagram state lanjut

Penundaan (suspend) adalah operasi penting dan telah diterapkan dengan beragam cara. Penundaan biasanya berlangsung singkat. Penundaan sering dilakukan sistem untuk memindahkan proses-proses tertentu guna meredukdi beban sistem selama beban puncak. Proses yang ditunda (suspended blocked) tidak berlanjut sampai proses lain meresume. Untuk jangka panjang, sumber daya-sumber daya proses dibebaskan (dilucuti). Keputusan membebaskan sumber daya-sumber daya bergantung sifat masing-masing sumber daya. Memori utama seharusnya segera dibebaskan begitu proses tertunda agar dapat dimanfaatkan proses lain. Resuming (pengaktifan kembali) proses, yaitu menjalankan proses dari titik (instruksi) dimana proses ditunda. Operasi suspend dan resume penting, sebab : a. Jika sistem berfungsi secara buruk dan mungkin gagal maka proses-proses dapat disuspend agar diresume setelah masalah diselesaikan. Contoh : Pada proses pencetakan, bila tiba-tiba kerta habis maka proses disuspend. Setelah kertas dimasukkan kembali, proses pun dapat diresume. b. Pemakai yang ragu/khawatir mengenai hasil prose dapat mensuspend proses (bukan membuang (abort) proses). Saat pemakai yakin proses akan berfungsi secara benar maka dapat me-resume (melanjutkan kembali di instruksi saat disuspend) proses yang disuspend. c. Sebagai tanggapan terhadap fluktuasi jangka pendek beban sistem, beberapa proses dapat disuspend dan diresume saat beban kembali ke tingkat normal. Gambar berikut menunjukkan modifikasi diagram state dengan memasukkan kejadian suspend dan resume. Gambar 3.2 : Diagram lima state proses Dua state baru dimasukkan sehingga membentuk diagram 5 state, yaitu : 1. Suspended ready 2. Suspended blocked Penundaan dapat diinisialisasi oleh proses itu sendiri atau proses lain. a. Pada sistem monoprocessor, proses running dapat mensuspend dirinya sendiri karena tak ada proses lain yang juga running yang dapat memerintahkan suspend. b. Pada sistem multiprocessor, proses running dapat disuspend proses running lain pada pemroses berbeda. Proses ready hanya dapat di suspend oleh proses lain. Pada proses blocked terdapat transisi menjadi suspended blocked. Pilihan in dirasa aneh. Apakah tidak cukup menunggu selesainya operasi masukan/keluaran atau kejadian yang membuat proses ready atau suspended ready ?. Bukankah state blockedm readyblockedm suspended blocked sama-sama tidak mendapat jatah waktu pemroses ?. Kenapa dibedakan ?. Alasannya, karena penyelesaian operasi masukan/keluaran bagi proses blocked mungkin tak pernah terjadi atau dalam waktu tak terdefinisikan sehingga lebih baik disuspend agar sumber daya-sumber daya yang dialokasikan untuk proses tersebut dapat digunakan proses-proses lain. Untuk kondisi ini, lebih baik sumber daya-sumber daya yang dipegang proses yang berkondisi seperti ini dipakai proses-proses lain. Proses blocked disuspend sistem atau secara manual menjadi suspended blocked. Bila akhirnya operasi masukan/keluaran berakhir maka segera proses suspended blocked mengalami transisi. Karena resume dan suspend mempunyai prioritas tinggi maka transisi segera dilakukan. Suspend dan resume dapat digunakan untuk menyeimbangkan beban sistem saat mengalami lonjakan di atas normal.

3.5. Program Control Block (PCB)

Struktur data PCB menyimpan informasi lengkap mengenai proses sehingga dapat terjadi siklus hidup proses. Sistem operasi memerlukan banyak informasi mengenai proses guna pengelolaan proses. Informasi ini berada di PCB. Sistem berbeda akan mengorganisasikan secara berbeda. Informasi dalam PCB : 1. Informasi identifikasi proses Informasi ini berkaitan dengan identitas proses yang berkaitan dengan tabel lainnya. Informasi tersebut meliputi : a. Identifier proses b. Identifier proses yang menciptakan c. Identifier pemakai 2. Informasi status pemroses Informasi tentang isi register-register pemroses. Saat proses berstatus running, informasi tersebut berada diregister-register. Ketika proses diinterupsi, semua informasi register harus disimpan agar dapat dikembalikan saat proses dieksekusi kembali. Jumlah dan jenis register yang terlibat tergantung arsitektur komputer. Informasi status terdiri dari : a. Register-register yang terlihat pemakai Adalah register-register yang dapat ditunjuk instruksi bahasa assembly untuk diproses pemroses. b. Register-register kendali dan status Adalah register-register yang digunakan untuk mengendalikan operasi pemroses. c. Pointer stack Tiap proses mempunyai satu atau lebih stack, yang digunakan untuk parameter atau alamat prosedur pemanggil dan system call. Pointer stack menunjukkan posisi paling atas dari stack. 3. Informasi kendali proses Adalah informasi lain yang diperlukan sistem operasi untuk mengendalikan dan koordinasi beragam proses aktif. Informasi kendali terdiri dari : a. Informasi penjadwalan dan status Informasi-informasi yang digunakan untuk menjalankan fungsi penjadwalan, antara lain : a.1 Status proses Mendefinisikan keadaan/status proses (running, ready, blocked) a.2 Prioritas Menjelaskan prioritas proses. a.3 Informasi berkaitan dengan penjadwalan Berkaitan dengan informasi penjadwalan, seperti lama menunggu, lama proses terakhir dieksekusi. a.4 Kejadian Identitas kejadian yang ditunggu proses. b. Penstrukturan data Satu proses dapat dikaitkan dengan proses lain dalam satu antrian atau ring, atau struktur lainnya. PCB harus memiliki pointer untuk mendukung struktur ini. c. Komuikasi antar proses Beragam flag, sinyal dan pesan dapat diasosiasikan dengan komunikasi antara dua proses yang terpisah. d. Manajemen memori Bagian yang berisi pointer ke tabel segmen atau page yang menyatakan memori maya (virtual memori) proses. e. Kepemilikan dan utilisasi sumber daya Sumber daya yang dikendalikan proses harus diberi tanda, misalnya : e.1 Berkas yang dibuka e.2 Pemakain pemroses e.3 Pemakaian sumber daya lainnya Informasi ini diperlukan oleh penjadwal. Struktur citra proses digambarkan berurutan di satu ruang alamat. Implementasi penempatan citra proses yang sesungguhnya bergantung skema manajemen memori yang digunakan dan organisasi struktur kendali sistem operasi. Gambar 3.3 : Proses pemakai

3.6. Operasi-operasi pada proses

Sistem operasi dalam mengelola proses dapat melakukan operasi-operasi terhadap proses. Operasi tersebut adalah : a. Penciptaan proses b. Penghancuran/terminasi proses c. Penundaan proses d. Pelanjutan kembali proses e. Pengubahan prioritas proses f. Memblok proses g. Membangunkan proses h. Menjadwalkan proses i. Memungkinkan proses berkomunikasi dengan proses lain

3.7 Penciptaan proses

Melibatkan banyak aktivitas, yaitu : a. Memberi identitas proses b. Menyisipkan proses pada senarai atau tabel proses c. Menentukan prioritas awal proses d. Menciptakan PCB e. Mengalokasikan sumber daya awal bagi proses Ketika proses baru ditambahkan, sistem operasi membangun struktur data untuk mengelola dan mengalokasikan ruang alamat proses. Kejadian yang dapat menyebabkan penciptaan proses : a. Pada lingkungan batch, sebagai tanggapan atas pemberian satu kerja (job) Sistem operasi dengan kendali batch job, setelah menciptakan proses baru, kemudian melanjutkan membaca job berikutnya. b. Pada lingkungan interaktif, ketika pemakai baru berusaha logon. c. Sebagai tanggapan suatu aplikasi, seperti permintaan pencetakan file, sistem operasi dapat menciptakan proses yang akan mengelola pencetakan itu. Sistem operasi menciptakan proses untuk memenuhi satu fungsi pada program pemakai, tanpa mengharuskan pemakai menunggu. d. Proses penciptaan proses lain (proses anak). Untuk mencapai modularitas atau mengeksploitasi kongkurensi, program pemakai memerintahkan pembuatan sejumlah proses. Proses dapat menciptakan proses baru yaitu anak proses (child process), sedangkan proses yang menciptakannya disebut proses induk (parent process). Proses anakpun kembali dapat menciptakan proses-proses anak lainnya. Proses-proses dapat membentuk pohon hirarki proses.

3.8 Tahap-tahap penciptaan proses

Penciptaan proses dapat disebabkan beragam sebab. Penciptaan proses meliputi beberapa tahap : 1. Beri satu identifier unik ke proses baru. Isian baru ditambahkan ke tabel proses utama yang berisi satu isian perproses. 2. Alokasikan ruang untuk proses. 3. PCB harus diinisialisasi. 4. Kaitan-kaitan antar tabel dan senarai yang cocok dibuat. 5. Bila diperlukan struktur data lain maka segera dibuat struktur data itu.

3.9. Penghancuran proses

Penghancuran proses melibatkan pembebasan proses dari sistem, yaitu : a. Sumber daya-sumber daya yang dipakai dikembalikan. b. Proses dihancurkan dari senarai atau tabel sistem. c. PCB dihapus (ruang memori PCB dikembalikan ke pool memori bebas). Penghancuran lebih rumit bila proses telah menciptakan proses-proses lain. Terdapat dua pendekatan, yaitu : a. Pada beberapa sistem, proses-proses turunan dihancurkan saat proses induk dihancurkan secara otomatis. b. Beberapa sistem lain menganggap proses anak independen terhadap proses induk, sehingga proses anak tidak secara otomatis dihancurkan saat proses induk dihancurkan. Tabel 3.2 : Alasan-alasan penghancuran proses

3.10. Pengalihan proses

Kelihatannya pengalihan proses (process switching) adalah sepele. Pada suatu saat, proses running diinterupsi dan sistem operasi memberi proses lain state running dan menggilir kendali ke proses itu. Dalam hal ini muncul beberapa masalah, yaitu : 1. Kejadian-kejadian apa yang memicu alih proses ? 2. Masalah lain adalah terdapatnya perbedaan antara alih proses (process switching) dan alih konteks (context switching). 3. Apa yang harus dilakukan sistem operasi terhadap beragam struktur data yang dibawah kendalinya dalam alih proses ?

3.11. Kejadian-kejadian penyebab pengalihan proses

Kejadian-kejadian yang menyebabkan terjadinya alih proses adalah : 1. Interupsi sistem Disebabkan kejadian eksternal dan tak bergantung proses yang saat itu sedang running. Contoh : selesainya operasi masukan/keluaran. Pada kejadian interupsi, kendali lebih dulu ditransfer ke interrupt handler yang melakukan penyimpanan data-data dan kemudian beralih ke rutin sistem operasi yang berkaitan dengan tipe interupsi itu. Tipe-tipeinterupsi antara lain : a. Interupsi clock (clock interrupt) Sistem operasi (penjadwal) menentukan apakah proses yang sedang running telah mengeksekusi selama jatah waktunya. Jika telah mencapai jatahnya maka proses dialihkan ke state ready dan proses lain dijadwalkan running. b. Interupsi masukan/keluaran Kejadian dimana peralatan masukan/keluaran melakukan interupsi meminta layanan sistem operasi. Sistem operasi segera menentukan aksi-aksi masukan/keluaran yang harus dilakukan. c. Page/memory fault Pemroses menemui pengacuan alamat memori maya yang tidak terdapat di memori utama (fisik). Sistem operasi segera memerintahkan untuk mengambil page yang terdapat alamat yang dimaksud untuk dipindah ke memori utama. 2. Trap Adalah interupsi karena terjadinya kesalahan atau kondisi kekecualian (exception conditions) yang dihasilkan proses yang running, seperti usaha illegal dalam mengakses file. Dengan trap, sistem operasi menentukan apakah kesalahan yang dibuat merupakan kesalahan fatal ? a. Jika fatal, proses yang saat itu running disingkirkan dan terjadi alih proses. b. Jika kesalahan tidak fatal maka bergantung sifat kesalahan dan rancangan sistem operasi. Kemungkinan yang dilakukan adalah menjalankan prosedur pemulihan atau memperingkatkan ke pemakai. Saat terjadi trap, mungkin terjadi pengalihan proses mungkin pula resume proses. 3. Supervisor call Yaitu panggilan meminta atau mengaktifkan bagian sistem operasi. Contoh : Proses pemakai running meminta layanan masukan/keluaran seperti membuka file. Panggilan ini menghasilkan transfer ke rutin bagian sistem operasi. Biasanya, penggunaan system call membuat proses pemakai blocked karena diaktifkan proses kernel (sistem operasi).

3.12. Pengalihan konteks

Pengalihan konteks dapat terjadi tanpa pengalihan state process yang sedang running, sedang pengalihan proses pasti melibatkan juga pengalihan konteks. Siklus penanganan interupsi adalah : 1. Pemroses menyimpan konteks program saat itu yang sedang dieksekusi ke stack. 2. Pemroses menset register PC dengan alamat awal program untuk interuppet handler. Setelah kedua aktivitas itu, pemroses melanjutkan menjalankan instruksi- instruksi berikutnya di interuppt handler yang melayani interrupt. Pelaksanaan interupsi ini belum tentu mengakibatkan pengalihan ke proses lain (yaitu pengalihan PCB proses dari senarai running ke senarai lain (blocked, ready), dan sebaliknya. Kita menyebut pengalihan konteks adalah untuk pengalihan sementara yang singkat, misalnya untuk mengeksekusi program interrupt handler. Setelah penanganan interupsi selesa maka konteks yang terdapat pada stack dikembalikan sehingga kembali ke konteks proses semula tanpa terjadi pengalihan ke proses lain. Pengalihan proses terjadi jika proses yang running beralih menjadi state lain (ready, blocked), kemudian sistem operasi harus membuat perubahan-perubahan berarti terhadap lingkungannya. Rincian-rincian dalam pelaksanaan pengalihan proses dibahas setelah ini.

3.13. Pengalihan proses

Pengalihan proses terjadi jika proses yang running beralih menjadi state lain (ready, blocked) kemudian sistem operasi membuat perubahan-perubahan berarti terhadap lingkungan. Langkah-langkah yang terlibat dalam pengalihan proses sebagai berikut : 1. Simpan konteks pemroses, termasuk register PC dan register-register lain. 2. Perbarui PCB proses yang running. Pelaksanaan termasuk mengubah state proses menjadi salah satu state (ready, blocked, suspendedready). Field-field yang relevan juga diperbarui misalnya alasan meninggalkan state running dan informasi akunting. 3. Pindahkan PCB proses ke senarai yang cocok (ready, blocked). 4. Pilih satu proses lain untuk dieksekusi sesuai dengan teknik penjadwalan. 5. Perbarui PCB proses yang dipilih termasuk perubahan state menjadi running. 6. Perbarui struktur-struktur data manajemen memori. Pekerjaan ini sesuai dengan pengelolaan translasi alamat. 7. Kembalikan konteks pemroses dengan konteks simpanan yang memberitahu konteks proses terakhir saat dialihkan dari state running. Pengembalian konteks ini dilakukan dengan memuatkan nilai-nilai register PC dan register-register lain dengan nilai konteks yang tersimpan. Pengalihan proses melibatkan pengalihan konteks dan perubahan state, memerlukan usaha lebih besar daripada pengalihan konteks.

3.14. Tabel-tabel proses

Tiap proses mempunyai state yang perlu diperhatikan sistem operasi yang dicatat dalam beragam tabel atau senarai yang saling berhubungan, yaitu : a. Tabel informasi manajemen memori Untuk menjaga keutuhan memori utama dan memori sekunder yang menyimpan informasi tentang : a.1 Alokasi memori utama yang dipakai proses. a.2 Alokasi memori sekunder yang dipakai proses (menggunakan manajemen memori dengan swapping). a.3 Atribut segmen memori utama dan sekunder. a.4 Informasi-informasi lain yang digunakan untuk pengelolaan memori. b. Tabel informasi manajemen masukan/keluaran Untuk mengelola perangkat masukan/keluaran, dimana perangkat tersebut digunakan proses tertenty, sehingga perlu dijaga agar proses lain tidak memakainya. Sistem operasi perlu mengetahui status operasi masukan/ keluaran dan lokasi memori utama yang digunakan untuk transfer data. c. Tabel informasi sistem file Berisi informasi mengenai ekstensi file, lokasi pada memori sekunder, status saat itu dan menyimpan atribut-atribut file lainnya. d. Tabel proses Untuk mengelola informasi proses di sistem operasi, lokasinya di memori, status dan atribut proses lainnya. Proses ditempatkan di memori utama di lokasi tertentu, proses mempunyai satu ruang alamat tersendiri. Ruang alamat yang digunakan proses disebut citra proses (process image), karena selain seluruh kode biner program, proses ditambahi atribut-atribut lain yang berkaitan penempatannya pada suatu lokasi memori dan status eksekusi pada saat itu. Tabel 3.3 : Elemen-elemen citra proses Struktur umum tabel-tabel kendali ditunjukkan pada gambar berikut : Gambar 3.4 : Struktur tabel-tabel kendali pada sistem operasi

3.15. PCB dan senarai proses

PCB berisi informasi mengenai proses yang diperlukan sistem operasi. PCB dibaca dan /atau dimodifikasi rutin sistem operasi seperti penjadwalan, alokasi sumber daya, pemrosesan interupsi, monitoring dan analisis kinerja. Kumpulan PCB mendefinisikan state sistem operasi. Untuk menyatakan senarai proses di sistem operasi dibuat senarai PCB. Gambar 3.5: Senarai PCB Diagram memperlihatkan hanya satu PCB berada di senarai running. PCB ini menyatakan proses yang saat itu sedang dieksekusi pemroses sehingga hanya satu proses yang running. Tentu saja ini tidak berlaku untuk multiprocessing yang dapat mengeksekusi lebih dari satu proses sekaligus. Prose-proses ready digambarkan dengan PCB proses-proses di senarai ready. Proses-proses menunggu dijadwalkan untuk dieksekusi pemroses. Proses yang dijadwalkan dieksekusi (yaitu mengalami transisi dari state ready menjadi running) maka PCBnya dipindah dari senarai ready ke senarai running. Proses running (PCB-nya berada di senarai running) dipindah sesuai state yang dialami proses itu, sebagai berikut : a. Bila proses berakhir (selesai) maka dijalankan operasi terminasi sehingga PCB-nya tak ada lagi. b. Bila proses diblocked karena menunggu alokasi sumber daya maka PCBnya dipindah ke senarai blocked. c. Bila proses dijadwalkan habis jatah waktu eksekusinya maka PCBnya dipindahkan ke senarai ready. Proses yang sedang blocked berpindah menjadi ready bila sumber daya yang ditunggu telah teralokasi untuknya. Untuk itu PCBnya dipindahkan ke senarai ready.

3.16. Pengaksesan informasi di PCB

Rutin-rutin sistem operasi perlu mengakses informasi di PCB. Tiap proses dilengkapi ID unik yang digunakan sebagai indeks (penunjuk) ke tabel untuk mengambil PCB. Kesulitan bukan pada mekanisme pengaksesan, tetapi masalah proteksi terhadap PCB. Dua masalah utama proteksi terhadap PCB, yaitu : 1. Bug (kesalahan pemrograman) pada rutin tunggal, misalnya interrupt handler dapat merusak PCB sehingga dapat berakibat menghancurkan kemampuan sistem mengelola proses-proses yang diasosiasikan dengan PCB. 2. Perubahan rancangan struktur dan semantiks PCB dapat berdampak ke sejumlah modul sistem operasi yang memakai PCB. Kedua masalah tersebut memberi gagasan agar semua rutin sistem operasi melewati satu rutin khusus, yaitu rutin penanganan PCB dalam mengakses PCB. Tugas rutin adalah memproteksi PCB dan menjadi perantara pembacaan dan penulisan PCB. a. Masalah pertama dapat dicegah karena rutin penanganan PCB akan selalu menjaga agar PCB tidak rusak. b. Masalah kedua jelas langusng teratasi karena antarmuka terhadap rutin- rutin lain masih tetap dipertahankan walau rincian-rincian PCB diubah. Rutin-rutin sistem operasi yang memakai antarmuka tidak perlu diubah. Teknik ini menghendaki didefinisikan antarmuka rutin penanganan PCB dan rutin-rutin lain dengan baik. Kelemahan teknik ini adalah adanya overhead kinerja karena harus memanggil rutin penanganan PCB. Pengaksesan langsung terhadap PCB tentu lebih cepat daripada harus memanggil rutin penanganan PCB.

3.17. Kedudukan sistem operasi

Sistem operasi pada dasarnya adalah sepert perangkat lunak lain, yaitu program yang perlu dieksekusi pemroses. Kedudukan sistem operasi dibanding proses-proses lain, adalah : a. Sistem operasi sebagai kernel tersendiri yang berbeda dengan proses-proses lain (kernel sebagai non-proses). b. Fungsi-fungsi sistem operasi dieksekusi dalam proses pemakai. c. Sistem operasi juga sebagai kumpulan proses (process based operating systems).

3.18. Kernel sebagai non proses

Kernel sistem operasi adalah di luar proses, digambarkan pada gambar berikut : Gambar 3.6 : Eksekusi kernel sebagai non-proses Ketika proses running diinterupsi atau memanggila system call, maka konteks pemroses proses ini disimpan dan kendali dilewatkan ke kernel. Sistem operasi mempunyai daerah memori dan stack sendiri untuk pemanggilan prosedur. Sistem operasi melakukan fungsi yang diinginkan dan mengembalikan konteks proses yang diinterupsi. Eksekusi proses pemakai yang diinterupsi dilanjutkan. Alternatif lain, sistem operasi menyimpan lingkungan proses, melakukan penjadwalan dan menjadwalkan proses lain. Konsep proses hanya diterapkan untuk program-program pemakai. Kode sistem operasi dieksekusi sebagai satu entitas terpisah, beroperasi pada mode kernel. Proses adalah non-kernel, sedang sistem operasi adala kernel yang bukan proses.

3.19. Dieksekusi dalam proses pemakai

Alternatif lain dieksekusi sistem operasi adalah mengeksekusi sistem operasi di konteks proses pemakai. Pendekatan ini didasarkan terutama pada pandangan bahwa sistem operasi sebagai kumpulan rutin yang dipanggil pemakai untuk melakukan beragam fungsi dan dieksekusi dalam lingkungan proses pemakai. Pendekatan in idigambarkan pada gambar berikut : Gambar 3.7 : Eksekusi dalam proses pemakai Pada seluruh waktu, sistem operasi mengelola N citra proses. Tiap citra tidak hanya mempunyai daerah untuk proses tapi juga daerah program, data dan stack untuk kernel. Terdapat juga ruang alamat yang dipakai bersama semua proses. Ketika diinterupsi, trap atau supervisor call terjadi,pemroses ditempatkan ke mode kernel dan kendali dilewatkan ke sistem operasi. Konteks pemroses disimpan dan alih konteks ke rutin sistem operasi. Eksekusi dilanjutkan dalam proses pemakai saat itu, tidak dilakukan alih proses, hanya alih konteks di proses yang sama. Jika sistem operasi telah menyelesaikan tugas, menentukan apakah proses berlanjut, maka alih konteks meresume program yang diinterupsi dalam proses itu juga. Keunggulan pendekatan ini adalah program pemakai yang diinterupsi untuk memperoleh rutin sistem operasi dan diresume tidak mengalami overhead peralihan dua proses. Jika sistem operasi menentukan bahwa alih proses terjadi bukan kembali ke proses semula yang dieksekusi, maka kendali dilewatkan ke rutin alih proses. Rutin ini boleh dijalankan pada proses boleh juga tidak, bergantung rancangan sistem. Pada keadaan ini, proses saat itu menjadi state non-running dan proses lain menjadi running.

3.20. Sistem operasi sebagai kumpulan proses

Pendekatan ini mengimplementasikan sistem operasi sebagai kumpulan proses. Pendekatan ini digambarkan pada gambar berikut : Gambar 3.8: Eksekusi sistem operasi sebagai proses Variannya adalah perangkat lunak bagian kernel dieksekusi dalam mode kernel. Fungsi-fungsi kernel utama diorganisasi sebagai proses-proses terpisah. Terdapat kode kecil pengalihan proses yang dieksekusi di luar proses. Pendekatan ini mempunyai beberapa keunggulan, yaitu : a. Perancangan modular dapat diterapkan ke perancangan sistem operasi. Sistem operasi menjadi modul-modul dengan interface yang bersih dan minimal antar modul-modul itu. b. Fungsi-fungsi sistem operasi tak kritis secara bagus dapat diimplementasikan sebagai proses-proses terpisah. c. Mudah diterapkan pada lingkungan multiprocessor atau multicomputer dimana beberapa layanan sistem operasi ditaruh di pemroses-pemroses tertentu. Teknik ini akan meningkatkan kinerja.

3.21. Mikrokernel

Saat ini, mikrokernel mendapat banyak perhatian. Mikrokernel adalah inti sistem operasi yang menyebabkan landasan perluasan sistem operasi. Pendekatan mikrokernel dipopularkan sistem operasi MACH. Secara teoritis, pendekatan mikrokernel menyediakan derajat fleksibilitas dan modularitas tinggi. Sistem operasi yang memakai pendekatan mikrokernel adalah MS Windows NT. Landasan pendekatan mikrokernel adalah hanya fungsi-fungsi sistem operasi inti yang secara mutlak esensi yang harus berada di kernel. Layanan-layanan dan aplikasi-aplikasi yang kurang esensi dibangin diatas mikrokernel itu. Meskipun pembagian antara yang perlu dan tidak perlu ada di mikrokernel beragam. Terdapat ciri yang sama yaitu banyak lauanan yang secara tradisional merupakan bagian sistem operasi menjadi subsistem eksternal. Subsistem in berinteraksi dengan kernel dan subsistem-subsistem lain. Layanan-layanan itu antara lain sistem file, sistem windowing dan layanan-layanan keamanan. Komponen-komponen sistem operasi di luar mikrokernel saling berinteraksi melalui pesan yang dilewatkan melalui mikrokernel. Fungsi mikrokernel adalh sebagai mediator pertukaran pesan. Mikrokernel memvalidasi pesan, melewatkan pesan antara komponen-komponen dan memberi hak pengaksesan perangkat keras. Struktur ini ideal untuk lingkungan pemrosesan terdistribusi karena mikrokernel dapat melewatkan pesan baik secara lokal atau jarak jauh tanpa perubahan komponen-komponen sistem operasi yang lain.

DAFTAR PUSTAKA

1. Hariyanto, Bambang, Ir., Sistem Operasi, Penerbit Informatika, Bandung, 1999 2. Tanenbaum, Andrew S., Modern Operating Systems, Prentice Hall Inc., 1992

Ke Menu
Last updated : 2 April 2000